Pediatric Airway-You Swallowed What?

Staci Kothbauer, CRNA, MS, APNP

University of Wisconsin Hospital
American Family Children’s Hospital
Madison, WI
Objectives

* Understand basic pediatric airway anatomy and how it differs from adults
* Identify common syndromes associated with a pediatric difficult airway
* Describe techniques to manage a difficult airway
* Identify risk factors for airway complications during a general anesthetic in the pediatric patient
* Identify common airway emergencies that may present management challenges

Pediatric airway anatomy

* Tongue-large in proportion to oral cavity
* Position of larynx-higher in neck (C3-4) peds vs (C4-5) in adults

Pediatric airway anatomy

* Epiglottis-large, floppy, and angled away from axis of trachea

Pediatric airway anatomy

* Subglottis-narrowest portion of larynx is cricoid cartilage

- Vocal Cords-lower attachment anteriorly
- Axis of VC is perpendicular to the trachea

- Cuffed vs Uncuffed ETT
 - Cuffed ETT-(age/4) +3
 - Uncuffed ETT-(age/4) +4
 - Distance-(age/2) +12
 - Leak at 20-30 cm H2O
 - May want to consider uncuffed in infants with anticipated prolonged intubation

Microcuff ETT

Pediatric airway

Complications of intubation
- Post-intubation croup
- ETT to large
- Surgery > 1 hour
- Repeated attempts
- Traumatic intubation
- Age 1-4

- Position other than supine
- Change in position during procedure
- Coughing on ETT
- Previous history of croup

Pediatric syndromes

* **Pierre Robin**
 - Mandibular hypoplasia
 - Direct visualization may be difficult, if not impossible

Pediatric syndromes

* **Achondroplasia**
 - Difficult intubation
 - Midfacial hypoplasia
 - Small nasal passages and mouth
 - Megacephaly

Pediatric syndromes

- Marfan syndrome
 - Difficult intubation
 - Narrow palate or high arched palate
 - Scoliosis or kyphosis
 - Cardiac and pulmonary disease
 - Dissecting aortic aneurysm

Pediatric Syndromes

- Rheumatoid Arthritis
 - Limited TMJ mobility
 - Hypoplastic mandible
 - Cricoarytenoid arthritis with narrow larynx
 - Cervical spine subluxation, rigid cervical spine

Pediatric syndromes

- **Scleroderma**
 - Extensive scarring of mouth, face and body
 - Difficult intubation
 - Decreased pulmonary compliance
 - Chronic steroid use

Pediatric syndromes-Treacher-Collins

Pediatric syndromes

* Trisomy 21 (Down’s syndrome)
 * Small mouth
 * Small mandible
 * Large, protruding tongue
 * Cervical spine subluxation
 * Consider ½-1 size smaller ETT

Pediatric syndromes

* Turner syndrome
 * Narrow maxilla
 * Small mandible
 * Short neck
 * Difficult intubation
 * Associated cardiac disease
 * Hypertension

Management of the Pediatric Difficult Airway

* Awake vs Asleep
* Asleep
 * Spontaneously breathing
 * Helpful in locating glottis
 * Avoid neuromuscular blockade
* Sedation-if tolerated
 * Midazolam (0.05 mg/kg IV) and fentanyl (0.5-1 mcg/kg IV)
 * Ketamine (0.25-0.5 mg/kg IV) every 2 minutes
 * Psychomimetic emergence reactions less in children

Anesthetizing the airway

* Nebulized lidocaine
* Topical spray or jellies
* Translaryngeal lidocaine
* “spray as you go” with lidocaine
* Superior laryngeal nerve block
* **Use caution not to deliver toxic lidocaine doses**
 * 5 mg/kg or 7 mg/kg with epinephrine

Unexpected Difficult Airway

* Biggest difference from adult
 * metabolic rate
 * FRC
* Time from zero 02sat from inspired concentration of 90% to neurological injury
* Adults-10 minutes
* Children-4 minutes!!!!

Who is at risk for respiratory adverse events?

* Laryngospasm
 * 14% in <6 year olds to 3.6% in >6 year olds (1)
 * Higher ASA score
 * Type of airway device used (1-4)
 * Upper respiratory infection (URI) (5)

Upper Respiratory Infections

* Bordet et al. in Pediatric Anesthesia (2002) (1)
 * <6 years
 * Recent RI
 * Use of LMA
* Flick et al. in Pediatric Anesthesia (2008) (2)
 * 130 children with laryngospasm under GA
 * Significant association between laryngospasm and current URI or airway anomaly
 * LMA + URI=strong association

When to Cancel?

* Croup, bronchitis, bronchiolitis, or pneumonia
 * Within 4-6 weeks
* Current or new URI
 * Dependent on procedure
* Fever
* Wheezing
* “Wet” cough
* Patient history-asthma

When to Cancel?

* How long to postpone?
 * Ideally 7 weeks… not practical
 * Postpone 2 weeks

* Bottom line-proceed with caution if asymptomatic

Laryngospasm

* Chin lift
* Jaw thrust
* Positive pressure
* Propofol
* Succinylcholine (0.5 mg/kg IV) or (3-4 mg/kg IM) (1)
* Rocuronium (4-5 mg/kg IM) (2)
* Treatment depends on severity of laryngospasm

Airway Emergencies

* Epiglottitis, foreign body, bleeding tonsil
* **AIRWAY TAKES PRIORITY OVER “FULL STOMACH”**
 * Keep spontaneously breathing
 * Laryngoscopy under deep volatile agent
 * ***KEEP CHILD CALM***
* Clear communication with ENT surgeon and OR staff PRIOR to induction

Airway Emergencies

* IV after induction
* Parents into OR ????
* Induce in sitting position
* IV- 10-30 mL/kg of LR rapidly
* Early administration of atropine (10 mcg/kg IV) or glycopyrrolate (10 mcg/kg IV)

Upper Airway Obstruction-inspiratory stridor, retractions, tachypnea

- **Epiglottitis**
 - Keep child calm
 - Inhalation induction in sitting position
 - IV, rapid rehydration, atropine (10 mcg/kg)
 - Deep intubation
 - ETT ½ size smaller
 - Unable to intubate → trach
 - Post-op-PICU, 24-48 hrs.

Foreign Body Aspiration

- 5th leading cause of death in <1 year olds
- May present with wheezing, cough, and unilateral breath sounds
- Emergency treatment if symptomatic... OR
- If stable, radiographic exam
- **DO NOT INDUCE WITHOUT ENT SURGEON!**

What is the foreign body?

LEGO!
Tonsil Bleed

* Occurs within 6 hours, or 5 to 10 days post-op
* Considered full stomach
* Potential loss of airway
* Hemodynamic compromise
* ***Replace fluid, if possible, and draw Hgb/Hct

Tonsil Bleed

* IV access prior to induction
* Pretreat with atropine (10 mcg/kg IV) or glycopyrrolate (10 mcg/kg IV)
* Induce with ketamine (1.2 mg/kg IV) or etomidate (0.3 mg/kg IV), and succinylcholine (1.5-2 mg/kg IV)
* RSI
* Difficulty visualizing VC-press on stomach
* Limit opioids
* OG tube prior to extubation

Asthma in Emergency cases

* **Goals:** oxygenation, reduce airway obstruction, prevent complications
* RSI if full stomach-avoid “light” intubation
* Premed prior to induction
 * Opioids, IV lidocaine
 * Glycopyrrolate or atropine
* Increase expiratory time to prevent air trapping
* Accept somewhat elevated PaCO2
* Limit peak inspiratory pressure to 40-45 cm H2O

Bronchospasm

* **Treatment**
 * Bronchodilator-nebulized or metered-dose inhaler
 * Albuterol
 * Beta-adrenergic agents
 * Epinephrine 1:1000 (0.01 mg/kg) SQ every 15 min x3 (max 0.3 mL)
 * Terbutaline-0.01 mL/kg (max 0.25 mL) SQ every 30 min x2 or 0.1 mcg/kg/min, titrate to effect

Corticosteroids

* Hydrocortisone 7 mg/kg IV immediately and 7 mg/kg/24hr, divided in 6 doses
* Methylprednisolone 2 mg/kg IV immediately and 2 mg/kg/24hr, divided in 6 doses
* Dexamethasone 0.3 mg/kg IV immediately and 0.3 mg/kg/24hr, divided in 6 doses

Conclusions

* Pediatric airway anatomy is different from that of an adult airway
* Be alert to children with syndromes and the potential for a difficult airway
* Keep the child spontaneously breathing when a difficult airway is suspected
* Proceed with caution with recent URI
* Keep child calm during emergency airway situations
* Avoid “light” anesthesia with asthmatics